Mobile Midi Karaoke

Life Cycle Objectives

Don Le

Kunal Walia
Operational Concept

Mobile Midi Karaoke (MMK) is an entertainment tool for singing karaoke on your mobile phone. The tool is designed for midi capable mobile phones. The goal of the project is to provide entertainment for a single person, or a group of people, on the go. The users will be able to access a list of songs available online. The songs will then be downloaded to the mobile phone and the midi will play while the lyrics of the song are displayed on the screen. The users will be able to sing along to their favorite songs anywhere and anytime with their cellular phones.

Case Scenarios

Steve 19, UW student

Steve and his friends are hanging out at his apartment. Steve is a broke college student, so he can’t afford to have a TV or any other kind of entertainment in his apartment. With nothing to do, Steve’s friends are rapidly becoming bored. Suddenly, Steve remembers that he has Mobile Midi Karaoke on his phone! He quickly takes out his phone, downloads a song, and within seconds, he and his friends are having a great time singing Bob Marley songs. Without Mobile Midi Karaoke, his friends might have left early, but thanks to having MMK on his phone, he was able to satisfy his friends and have a good time.

Jen, 14, Freshman high school student

Jen is an avid Karaoke fan without a driver’s license. She has no means of transportation and she is too young to go to a Karaoke bar. Since her parents can’t afford a Karaoke machine, she borrows her mom’s cell phone, which is equipped with MMK technology. She is then able to sing all night to her favorite Justin Timberlake songs.

System Requirements

The system will have two components, a server side component and a client side component.

Client Side

The client side component will have a visual display allowing the user to start the karaoke program. The program will then connect to the server and show the user the list of available songs for the user to sing karaoke to. Once the user selects a song, the client side again downloads the midi file and the text file, for the lyrics. The user can then start playing the song and the midi file will start playing while the text file is displayed on the screen.

Server Side

The server side will take a request from a client and respond with a list of songs. Once the client side responds with a request for a specific song, the server will find the appropriate midi file and text file and send it to the client.

System & Software Architecture

The two components in the system would require software for both the server and client.

Server Side

The server side software could be a servlet, written in Java. The server will host the midi files, which are used for playing the music, and host the text files, which are the lyrics for the song. All the available midi and text files could be indexed in the XML file by the servlet. On a request for a song from a client, the servlet will look up the song in the XML file and send to the client the appropriate midi file and text file. The server will distribute songs on demand.

Client Side

The other component will be the software on the client side. The client side software will be a midlet, also written in Java. The midlet will take advantage of the media Java APIs, which support midi playing.

In order to play a song, the client/midlet would go through the following steps. First, the midlet would request and download from the song server a list of available songs. The list will be displayed on the screen of the phone using the Java mobile APIs. The user then selects a song that they want to sing to and the midlet establishes a connection to the server and requests the song. Songs, which are combinations of midi and text files, will be downloaded from the server to the client by a connection between the servlet and midlet. Once the song has been downloaded, the connection between the servlet and midlet is closed, and the midlet goes on to play the song. The midlet will play the midi file and display the text. The user will be able to scroll through the lyrics on the phone as the midi is playing so that the user can sing along. The exact method of scrolling can be flexible. It could be a manual implementation where the user scrolls with the phone buttons or an automatic one where the lyrics change with the song based on time intervals.

Lifecycle Plan

A small team of developers will implement Mobile Midi Karaoke. The server and majority of the client side could be developed separately. In later development, the client side would need to be integrated with the server side; this is where the mixed development comes in. So the server side would be the first thing to be developed. At first, the development team will be the only users and supporters of the MMK technology. A project manager could head the team, and under him could be developers. Since the time for the project is not very long, the team could develop the key features of MMK and if there is time develop other features for MMK. Some of these other features could include auto scrolling of lyrics with the beat of the music, or easy uploading of new midi and text files to the server. After the project has been developed, most of the developers could go on to work on other projects, while some could remain and become the support team for MMK. The current plan for support would just require updating the xml file with new songs and making sure the server is up and running. In the future if the support seems low, the team could split into two and half could remain supporting while the other half could develop the features that could not be implemented in phase 1 of MMK.

Feasibility Rationale

Implementation of Mobile Midi Karaoke is very feasible. The two components, server and client, can be easily implemented using current technology. The server could be implemented using Tomcat and its servlet APIs. The XML file that is used to store the information could be read from and updated using existing XML parsers. The client could be implemented using current Java APIs for mobile phones. The current mobile phone technology allows for sufficient data transfer speeds to download midi files to the phone. Given the amount of time allotted for this project the core features could be implemented successfully, which would give a fully functional tool.

